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Abstract 
 

Much scientific data is not obtained from 
measurements but rather derived from other data by the 
application of computational procedures. We hypothesize 
that explicit representation of these procedures can 
enable documentation of data provenance, discovery of 
available methods, and on-demand data generation (so-
called “virtual data”). To explore this idea, we have 
developed the Chimera virtual data system, which 
combines a virtual data catalog, for representing data 
derivation procedures and derived data, with a virtual 
data language interpreter that translates user requests 
into data definition and query operations on the database. 
We couple the Chimera system with distributed “Data 
Grid” services to enable on-demand execution of 
computation schedules constructed from database 
queries. We have applied this system to two challenge 
problems, the reconstruction of simulated collision event 
data from a high-energy physics experiment, and the 
search of digital sky survey data for galactic clusters, 
with promising results. 
 

1 Introduction 
 

In many scientific disciplines, the analysis of “data” 
(whether obtained from scientific instruments, such as 
telescopes, colliders, or climate sensors, or from 
numerical simulations) is a significant community activity. 
As a result of this activity, communities construct, in a 
collaborative fashion, collections of derived data (e.g., flat 
files, relational tables, persistent object structures) with 
relationships between data objects corresponding to the 
computational procedures used to derive one from another 
(Figure 1). Recording and discovering these relationships 
can be important for many reasons, as illustrated by the 
following vignettes. 

“I’ve come across some interesting data, but I need to 
understand the nature of the corrections applied when it 
was constructed before I can trust it for my purposes.” 

“I want to search an astronomical database for galaxies 
with certain characteristics. If a program that performs this 
analysis exists, I won’t have to write one from scratch.” 

“I want to apply an astronomical analysis program to 
millions of objects. If the program has already been run 
and the results stored, I’ll save weeks of computation.” 

“I’ve detected a calibration error in an instrument and 
want to know which derived data to recompute.” 

“I want to find those results that I computed last month, 
and the details of how I generated them.” 

More generally, we want to be able to track how data 
products are derived—with sufficient precision that one 
can create and/or re-create data products from this 
knowledge. One can then explain definitively how data 
products are created, something that is often not feasible 
even in carefully curated databases. One can also 
implement a new class of “virtual data management” 
operations that, for example, “re-materialize” data 
products that were deleted, generate data products that 
were defined but never created, regenerate data when data 
dependencies or transformation programs change, and/or 
create replicas of data products at remote locations when 
re-creation is more efficient than data transfer. 

In order to explore the benefits of data derivation 
tracking and virtual data management, we have designed, 
prototyped, and experimented with a virtual data system 
called Chimera. A virtual data catalog (based on a 
relational virtual data schema) provides a compact and 
expressive representation of the computational procedures 
used to derive data, as well as invocations of those 
procedures and the datasets produced by those 
invocations. A virtual data language interpreter executes 
requests for constructing and querying database entries. 
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Figure 1: Relationships among programs, 
computations, and data 
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 We couple Chimera with other Data Grid services [1, 
11, 18, 28] to enable the creation of new data by 
executing computation schedules obtained from database 
queries, and the distributed management of resulting data. 

We have applied the Chimera system successfully to 
two challenging physics data analysis computations, one 
involving the generation and reconstruction of simulated 
high-energy physics collision event data from the 
Compact Muon Solenoid (CMS) experiment at CERN 
[20, 25], and the other the detection of galactic clusters in 
Sloan Digital Sky Survey (SDSS) data [4, 29]. Our results 
demonstrate our ability to track data derivations and to 
schedule large distributed computations in response to 
user virtual data queries. Others have successfully used 
some of these techniques in the analysis of data from the 
LIGO gravitational wave observatory [14]. 

The importance of being able to document provenance 
is well known [30]. Our work builds on preliminary 
explorations within the GriPhyN project [5, 15, 16]. There 
are also relationships to work in database systems [9, 10, 
31] and versioning [8, 26]. Cui and Widom [12, 13] 
record the relational queries used to construct materialized 
views in a data warehouse, and then exploit this 
information to explain lineage. Our work can leverage 
these techniques, but differs in two respects: first, data is 
not necessarily stored in databases and the operations used 
to derive data items may be arbitrary computations; 
second, we address issues relating to the automated 
generation and scheduling of the computations required to 
instantiate data products. 

Early work on conceptual schemas [21] introduced 
virtual attributes and classes, with a simple constrained 
model for the re-calculation of attributes in a relational 
context. Subsequent work produced an integrated system 
for scientific data management called ZOO [22], based on 
a special-purpose ODBMS that allowed for the definition 
of “derived” relationships between classes of objects. In 
ZOO, derivations can be generated automatically based on 
these relationships, using either ODBMS queries or 
external transformation programs. Chimera is more 
specifically oriented to capturing the transformations 
performed by external programs, and does not depend on 
a structured data storage paradigm or on fine-grained 
knowledge of individual objects that could be obtained 
only from an integrated ODBMS. 

We can also draw parallels drawn between Chimera 
and workflow [23, 27] and knowledge management 
systems that allow for the definition, discovery, and 
execution of (computational) procedures. 

The rest of this article is as follows. We first introduce 
the Chimera virtual data system and describe its virtual 
data schema and language (Sections 2-4). Then, we 
discuss the integration of Chimera with Data Grids 
(Section 5), our experiences applying the system to 
challenge problems (Section 6), and future directions. 

2 Chimera Architecture 
 
The architecture of the Chimera virtual data system is 

depicted in Figure 2. In brief, it comprises two principal 
components: a virtual data catalog (VDC; this 
implements the Chimera virtual data schema) and the 
virtual data language interpreter, which implements a 
variety of tasks in terms of calls to virtual data catalog 
operations. 

Applications access Chimera functions via a standard 
virtual data language (VDL), which supports both data 
definition statements, used for populating a Chimera 
database (and for deleting and updating virtual data 
definitions), and query statements, used to retrieve 
information from the database. One important form of 
query returns (as a directed acyclic graph, or DAG) a 
representation of the tasks that, when executed on a Data 
Grid, create a specified data product. Thus, VDL serves as 
a lingua franca for the Chimera virtual data grid, allowing 
components to determine virtual data relationships, to 
pass this knowledge to other components, and to populate 
and query the virtual data catalog without having to 
depend on the (potentially evolving) catalog schema. 

Chimera functions can be used to implement a variety 
of applications. For example, a virtual data browser might 
support interactive exploration of VDC contents, while a 
virtual data planner might combine VDC and other 
information to develop plans for computations required to 
materialize missing data (Section 5). 

The Chimera virtual data schema defines a set of 
relations used to capture and formalize descriptions of 
how a program can be invoked, and to record its potential 
and/or actual invocations. The entities of interest—
transformations, derivations, and data objects—are as 
follows; we describe the schema in more detail below. 
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Figure 2: Schematic of the Chimera architecture 
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• A transformation is an executable program. 
Associated with a transformation is information that 
might be used to characterize and locate it (e.g., 
author, version, cost) and information needed to 
invoke it (e.g., executable name, location, arguments, 
environment). 

• A derivation represents an execution of a 
transformation. Associated with a derivation is the 
name of the associated transformation, the names of 
data objects to which the transformation is applied, 
and other derivation-specific information (e.g., values 
for parameters, time executed, execution time). While 
transformation arguments are formal parameters, the 
arguments to a derivation are actual parameters. 

• A data object is a named entity that may be consumed 
or produced by a derivation. In the applications 
considered to date, a data object is always a logical 
file, named by a logical file name (LFN); a separate 
replica catalog or replica location service is used to 
map from logical file names to physical location(s) 
for replicas [2, 11]. However, data objects could also 
be relations or objects. Associated with a data object 
is information about that object: what is typically 
referred to as metadata. 

We do not address here the question of how the data 
dependency information maintained within the Chimera 
system is produced. Information about transformations 
and derivations can potentially be declared explicitly by 
the user, extracted automatically from a job control 
language, produced by higher-level job creation interfaces 
such as portals, and/or created by monitoring job 
execution facilities and file accesses.  

Information can be recorded in the virtual data system 
at various times and for various purposes. Transformation 
entries generated before invocation can be used to locate 
transformations and guide execution. Derivation entries 
generated before jobs are executed can provide 
information needed to generate a file. Entries generated 
after a job is executed record how to regenerate a file. 
Consider, for example, transformation entries that define 
the four stages of a simulation pipeline. An initial query 
for the output of this pipeline returns a DAG that, when 
executed, generates files called f1 - f4. Subsequent 
deletion of file f3 followed by a retrieval request for that 
file results only in the re-execution of stage 3 of the 
pipeline. 
 

3 Chimera Virtual Data Schema 
 

We describe here the Chimera virtual data schema, 
shown in Figure 3. 

A logical transformation is characterized by its 
identifying name, the namespace within which the name is 
unique, and a version number. The signature of the 

transformation includes input and output parameters, 
which need not be files. A transformation may have an 
arbitrary number of formal arguments. Thus the 
relationship between TRANSFORMATION and FORMALARG 
is 1:N. 

A transformation may have more than one derivation, 
each supplying different values for the parameters. A 
derivation may be applicable to more than one 
transformation. Thus, versioning allows for a range of 
valid transformations to apply, increasing the degrees of 
freedom for schedulers to choose the most applicable one. 

An ACTUALARG relates to a derivation. Its value 
captures either the LFN or the value of a non-file 
parameter. A FORMALARG may contain an optional default 
value, captured in a similar fashion by the same VALUE 
class. The VALUE class is an abstract base class for either 
a single value (SCALAR) or a list of similar values (LIST), 
which are collapsed union-fashion into a single table. 

The relationships between a transformation and its 
formal parameters, on the one hand, and a dependent 
derivation and its actual parameters, on the other, are not 
independent of each other. Each instantiation of an actual 
parameter maps to exactly one formal parameter 
describing the entry. The binding is created using the 
argument name, not its position in the argument list. 

 
 

 

Figure 3: UML description of the Chimera schema 
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The arguments on the command line of a 
transformation are captured in multiple fragments, each 
either a reference to a formal argument, or a textual string. 

Scheduler- and runtime environment-specific data is 
abstracted in the PROFILE table. For example, in the case 
of a Unix environment variable, the namespace is “env”, 
the key within this namespace is the environment variable 
name, and the value is a list of fragments, either 
references to bound variables or textual strings. 

The FRAGMENT table captures three child classes, either 
a textual string, a LFN or a reference to a bound variable.  
The three child classes are collapsed into a single table. 

The lower portion of the diagram deals with the 
physical location of any given transformation [16]. 

Finally, we note that Chimera applications will 
typically also require a METADATA table, which maps from 
(key, value) attribute pairs to LFNs, and a REPLICA table, 
which maps from LFNs to physical file locations. 
However, these relations are frequently implemented via a 
separate metadata catalog [7] and/or replica catalog [11] 
and so they are not considered here. 
 

4 Chimera Virtual Data Language 
 

As noted above, the Chimera virtual data language 
(VDL) comprises both data definition and query 
statements. We first introduce two data derivation 
statements, TR and DV, and then discuss queries. While 
our implementation uses XML internally, we use a more 
readable syntax here. 
 

4.1 The TR Data Definition Statement 
 
A TR statement defines a transformation. When the 

VDL interpreter processes such a statement, it creates a 
transformation object within the virtual data catalog. For 
example, the following definition provides the information 
required to execute a program app3. 

 
TR t1( output a2, input a1,  
       none env="100000",  
       none pa="500" ) { 
  app vanilla = "/usr/bin/app3"; 
  arg parg = "-p "${none:pa}; 
  arg farg = "-f "${input:a1}; 
  arg xarg = "-x -y "; 
  arg stdout = ${output:a2}; 

     profile env.MAXMEM = ${none:env}; 
} 
 

This definition reads as follows. The first line assigns 
the transformation a name (t1) for use by derivation 
definitions, and declares that t1 reads one input file 
(formal parameter name a1) and produces one output file 
(formal parameter name a2). The parameters declared in 
the TR header line are transformation arguments and can 
only be file names or textual arguments. 

The APP statement specifies (potentially as an LFN) 
the executable that implements the execution. 

The first three ARG statements describe how the 
command line arguments to app3 (as opposed to the 
transformation arguments to t1) are constructed. Each 
ARG statement comprises a name (here, parg, farg, and 
xarg) followed by a default value, which may refer to 
transformation arguments (e.g., a1) to be replaced at 
invocation time by their value. The special argument 
stdout (the fourth ARG statement in the example) is used 
to specify a filename into which the standard output of  an 
application would be redirected. 

Argument strings are concatenated in the order in 
which they appear in the TR statement to form the 
command line. The reason for introducing argument 
names is that these names can be used within DV 
statements to override the default argument values 
specified by the TR statement.  

Finally, the PROFILE statement specifies a default 
value for a Unix environment variable (MAXMEM) to be 
added to the environment for the execution of app3. 

 

4.2 The DV Data Definition Statement 
 
A DV statement defines a derivation. When the VDL 

interpreter processes such a statement, it records a 
transformation invocation within the virtual data catalog. 
A DV statement supplies LFNs for the formal filename 
parameters declared in the transformation and thus 
specifies the actual logical files read and produced by that 
invocation. For example, the following statement records 
an invocation of transformation t1 defined above. 
 

DV t1( 
  a2=@{output:run1.exp15.T1932.summary}, 
  a1=@{input:run1.exp15.T1932.raw}, 
  env="20000", pa="600" ); 
 

The string immediately after the DV keyword names 
the transformation invoked by the derivation. 

In contrast to transformations, derivations need not be 
named explicitly via VDL statements. They can be located 
in the catalog by searching for them via the logical 
filenames named in their IN and OUT declarations as well 
as by other attributes, as discussed below. 

Actual parameters in a derivation and formal 
parameters in a transformation are associated by name. 
For example, the statements above result in parameter a1 
of t1 receiving the value run1.exp15.T1932.raw and 
a2 the value run1.exp15.T1932.summary. 

The example DV definition corresponds to the 
following invocation: 

 
export MAXMEM=20000 
/usr/bin/app3 –p 600 \ 
    –f run1.exp15.T1932.raw –x –y \ 
    > run1.exp15.T1932.summary 
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Filenames listed as IN and OUT in a transformation 
need not necessarily appear as command line arguments in 
a corresponding derivation. For example, if a filename 
was determined directly by the executable through an 
internal definition or is determined dynamically, it might 
not appear on the command line even though the file is 
read or written by the application. In such cases, 
applications that know or can detect what filenames were 
read and written by an application could, after the fact, 
create a derivation record to describe these dynamic data 
dependencies. 

The filename insertion semantics described here 
support a wide variety of argument passing conventions.  
Executables with argument passing conventions that 
cannot be expressed in these terms must be executed by 
creating “wrapper” scripts or executables that adapt the 
VDL conventions to those expected by the executable. For 
example, applications that read the names of further input 
files from a “control” file can often be handled with a 
wrapper that accepts the filenames as command line 
arguments and places them in the control file before 
calling the actual application. In some cases, the creation 
of the control file itself could be described as a 
transformation that reads several files and produces the 
control file as its output. Then the real transformation can 
be described as having the control file as an input. 

 

4.3 Tracking Derivation Dependencies 
 
Chimera’s VDL supports the tracking of data 

dependency chains among derivations. For example, the 
following statements define two derivations (as well as 
two transformations), such that the output of the first is the 
input to the second. Thus, we can conclude that (unless 
file2 or file3 exist) to generate file3 we must run 
trans1 before trans2, and use its output file (file2) as 
the input file for trans2. 

 
TR trans1( output a2, input a1 ) { 
  app vanilla = "/usr/bin/app1"; 
  arg stdin = ${input:a1}; 
  arg stdout = ${output:a2}; 
} 
TR trans2( output a2, input a1 ) { 
  arg vanilla = "/usr/bin/app2"; 
  arg stdin = ${input:a1}; 
  arg stdout = ${output:a2}; 
} 
DV trans1( a2=@{output:file2}, 
  a1=@{input:file1} ); 
DV trans2( a2=@{output:file3}, 

  a1=@{input:file2} ); 
 

We can thus construct arbitrarily complex directed 
acyclic execution graphs (DAGs) automatically. For 
example, consider the transformations illustrated in Figure 
4. Four logical files, named f.a, f.b, f.c, and f.d in the 
figure, are produced as a result of this computation. The 

output from a first node generate is stored into file f.a. 
Two processes findrange each operate on disjoint 
subsets of the input f.a, publishing their results in f.b 
and f.c, respectively. A final node, analyze, combines 
the two halves. 

The following statements define the transformations 
generate, findrange, and analyze, and the 
derivations that produce files f.a, f.b, f.c, and f.d. 

 
TR generate( output a ) { 
  app vanilla = "generator.exe"; 
  arg stdout = ${output:a2}; 
} 
TR findrange( output b, input a,  
   none p="0.0" ) { 
  app vanilla = "ranger.exe"; 
  arg arg = "-i "${:p}; 
  arg stdin = ${output:a}; 
  arg stdout = ${output:b}; 
} 
TR analyze( input a[], output c ) { 
  app vanilla = "analyze.exe"; 
  arg files = ${:a}; 
  arg stdout = ${output:a2}; 
} 
DV generate( a=@{output:f.a} ); 
DV findrange( b=@{output:f.b},  
  a=@{input:f.a}, p="0.5" ); 
DV findrange( b=@{output:f.c},  
  a=@{input:f.a}, p="1.0" ); 
DV analyze( a=[ @{input:f.b},  
  @{input:f.c} ], c=@{output:f.d} ); 
 

Notice that the transformation findrange is invoked 
twice, with different values for the command line 
argument -i specifying different search ranges. 

 

4.4 Compound Transformations 
 
A compound transformation describes the coordinated 

(perhaps concurrent) execution of multiple programs and 
the passing of files among them. It is described in the 
same manner as a simple transformation, with a single 
derivation statement. All internal transformation 
invocations within a compound transformation are tracked 
in the catalog, along with all files read and produced by 
the internal transformation steps. The system can thus 
remain fully cognizant of all data dependencies, and 
arbitrary files within those dependency chains can be 
deleted and later re-derived, based on stored knowledge. 

 

generate f.a

findrange

findrange f.b

f.c

analyze f.d

 

Figure 4: Example directed acyclic graph 
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A transformation is either a simple transformation or a 
compound transformation. A compound transformation is 
itself composed of references to one or more 
transformations, each of which in turn are either simple or 
compound. In all other respects, and in particular, from 
the point of view of its external interface and semantics, 
compound and simple transformations are 
indistinguishable. Thus, compound transformations can 
themselves contain compound transformations.  

 

4.5 Queries 
 
VDL provides various commands for extracting 

derivation and transformation definitions. Since VDL is 
implemented in SQL, this query set is readily extensible. 
Query output can (optionally) be returned in the same 
format as the commands that could be used to re-create 
the matching entries. Query commands can be used both 
by end-user query systems (e.g., a virtual data browser) 
and by automated Grid components such as a data analysis 
system. 

In brief, VDL query commands allow one to search for 
transformations by specifying a transformation name, 
application name, input LFN(s), output LFN(s), argument 
matches, and/or other transformation metadata. One can 
search for derivations by specifying the associated 
transformation name, application name, input LFN(s), 
and/or output LFN(s). An important search criterion is 
whether derivation definitions exist that invoke a given 
transformation with specific arguments. From the results 
of such a query, a user can determine if desired data 
products already exist in the data grid, and can retrieve 
them if they do and create them if they do not. 

Query output options specify, first of all, whether 
output should be recursive or non-recursive (recursive 
shows all the dependent derivations necessary to provide 
input files assuming no files exist) and second whether to 
present output in columnar summary, VDL format (for re-
execution), or XML. 

 

5 Chimera as a Data Grid Component 
 
We discuss some of the issues that arise when the 

Chimera system is incorporated as a component within a 
larger Data Grid system. As illustrated in Figure 2, a 
virtual data “application” can combine information from 
both Chimera and other Data Grid components as it 
processes user requests for virtual data. For example, an 
application might combine information about the 
materialization status of a requested derivation with 
information about the physical location of replicas and the 
availability of computing resources to determine whether 
to access a remote copy or (re-)generate a data value. 

One proposed Data Grid architecture [17] interposes a 
planner between an application and other components 
illustrated in Figure 2. The planner accepts abstract DAGs 
from the application, that is, DAGs that refer only to 
LFNs and not to specific physical instances of files, and 
that are thus not yet bound to specific Grid locations. For 
LFNs needed as input, an abstract DAG does not specify 
if these files already exist at a computation site, need to be 
copied there, or should be re-derived; for LFNs produced 
as output, the planner must determine where to place the 
newly created file. Location decisions must also be made 
recursively for any additional derivations needed. 

The planner examines the abstract DAG, selects an 
execution site for each node, and then determines how to 
obtain and transport the data needed by each computation. 
The planner must also determine how to deal with the 
relocation of physical files produced by a job, if policies 
require that these files be relocated to specific physical 
file storage servers. The planner may evaluate several 
different execution plans, based for example on cost 
estimates for data movement vs. re-creation. 

The output of the request planner is a concrete DAG 
that refers only to real physical file names and specifies 
the steps that must be followed to compute or transport 
any input data that does not yet exist at its execution site. 

 

6 Experiences with the Chimera System 
 

We describe application experiments with our Chimera 
prototype, conducted on the small-scale Data Grid shown 
in Figure 5. (Subsequent experiments will use the larger 
International Virtual Data Grid Laboratory [6].) This Grid 
used Globus Toolkit resource management and data 
transfer components [17], Condor schedulers and agents 
[19, 24], and the DAGman job submission agent  to 
coordinate resources at four sites. 
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Figure 5: The Data Grid used in our experiments 
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In our experiments, we did not consider data 
replication. The persistent location of all data products 
was the site at which the VDL interpreter resided. All data 
files needed by executables were pulled to the executing 
sites, and all data files from successful executions were 
returned to the submission site upon completion of data 
derivations. All data transfers used the Grid-enabled data 
transfer tool GridFTP [2]. 

As we explain, the results demonstrate that Chimera 
can manage complex interdependencies among 
application invocations that occur in practice. We have 
also validated the capability of the Chimera system on a 
variety of larger and more complex artificial DAGs. 

 

6.1 CMS Data Reconstruction 
 
We used the Chimera prototype to assess the feasibility 

of using virtual data descriptions for data products 
involved in the production of Monte Carlo-based 
simulations of high-energy physics collision events in the 
CMS experiment [20]. 

Event simulation is critical to the design and operation 
of the complex detector that is at the heart of CMS, and is 
also used to test the scientific and data management 
software systems on which CMS will depend. 

This complex physics data derivation process 
comprises the following four-stage pipeline of 
transformations (i.e., executables). 

1. pythia using Monte Carlo techniques to 
determine randomly the physics attributes of a 
specific collision event. 

2. cmsim determines how that event would affect 
the CMS detector. 

3. writehits converts the information into a 
persistent object data structure in an object-
oriented database system. 

4. writedigis determines the digital signals that the 
detector would produce from the event. 

The first two stages produce files as output, while the 
second two stages produce object-oriented databases that 
are contained in the files of an Objectivity federation.  

In these experiments, we sidestepped many of the 
complications of managing data stored in object form by 
configuring simulations to produce just one event per file, 
instead of the usual hundreds. However, we did use the 
Objectivity database used in normal CMS simulation. 

 

6.2 SDSS Galactic Structure Detection 
 
Our second Chimera application concerns the analysis 

of data from the Sloan Digital Sky Survey (SDSS) [29]. 
As described at www.sdss.org, “…the Sloan Digital Sky 
Survey is the most ambitious astronomical survey project 
ever undertaken. The survey will map in detail one-quarter 

of the entire sky, determining the positions and absolute 
brightness of more than 100 million celestial objects. It 
will also measure the distances to more than a million 
galaxies and quasars.” The project, which will survey the 
night sky at an unprecedented resolution, is currently in its 
third year of data taking. When complete in 2004 it will 
have collected around 40 TB of image and spectroscopic 
data, and 3TB of catalog metadata. 

Working with collaborators at Fermilab, we applied the 
concept of virtual data to one scientific challenge problem 
on the SDSS project—that of locating galactic clusters in 
the image collection [3]. The goal of this application is to 
create a database of galaxy clusters for the entire survey. 
A highly simplified view of this problem is as follows. 

The sky is tiled into a set of regular “fields.” For each 
field, clusters are searched for in that field and in some set 
of neighboring fields, using the concepts of “brightest 
cluster galaxy” (BCG) and “brightest red galaxy” (BRG) 
to determine cluster candidates [3]. The resulting 
algorithm is a tree-structured pipeline (Figure 6) 
comprising the following five transformations. 

1. fieldPrep extracts from the full data set required 
measurements on the galaxies of interest and 
produces new files containing this data. The new 
files are about 40 times smaller than the full data 
sets. 

2. brgSearch calculates the unweighted BCG 
likelihood for each galaxy. The unweighted 
likelihood may be used to filter out unlikely 
candidates for the next stage. 

3. bcgSearch calculates the weighted BCG 
likelihood for each galaxy. This is the heart of 
the algorithm, and the most expensive step. 

4. bcgCoalesce determines whether a galaxy is the 
most likely galaxy in the neighborhood. 

5. getCatalog removes extraneous data and stores 
the result in a compact format. 

Further details of the algorithms and astrophysics 
mentioned here are provided elsewhere [3, 4, 32]. 

Figure 7 shows the actual dataflow found in the last 
three stages of a small computation in which 24 
brgSearch transformations (the leaves) reduce 156 files 
down to the root, where the getCatalog transformation 
produces the cluster catalog for a single field of the sky.  
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Figure 6: SDSS cluster identification workflow. 
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Figure 7: DAG for cluster identification workflow. 

 
 
The derivation getCatalog now becomes a function 

that can invoke all the prior four dependent steps. To 
generate “virtual” results for the entire sky, we define one 
derivation of the getCatalog transformation for each field 
of the current survey. 

This application motivated an important extension to 
the virtual data paradigm to permit the specification of 
transformations where the input and output file names are 
a function of one or more transformation arguments and 
thus cannot be known at the time when the transformation 
or even the derivation are defined. In the cluster finding 
mechanism, the celestial coordinates of the neighboring 
fields that will be required to locate the clusters within a 
given field of the survey are a function of that central 
field’s coordinates—i.e., they are the neighbors of that 
central field, and their coordinates and hence their file 
names must be computed dynamically once the 
coordinates of the central field are known. Table 1 
characterizes the five transformations used in the pipeline 
in terms of the number of static and dynamic file names. 

 
 

Table 1: Input and output files for galactic cluster 
identification computation 

Transform Fixed 
files in 

No. of varying 
input lists & 
files/list 

Fixed 
files 
out 

Varying 
output 
lists 

fieldPrep 1 1 
(13*12) 

 1  
(13*12) 

brgSearch 1 1 
(13*12) 

 1  
(13*12) 

bcgSearch 1 2 
(13*12,13*12) 

 1  
(7*12) 

bcgCoalesce 1 1 
(7*12) 

 1  
(12) 

getCatalog 1 1 
(12) 

1  

Table 2: Numbers of files produced and consumed for 
galactic cluster finding on entire sky survey 

Transform # derivations #files in #files out 
fieldPrep (45x600x12)/10 45x600x12 45x600x12 
brgSearch (45x600x12)/10 45x600x12 45x600x12 
bcgSearch (45x600x12)/10 2x45x600x12 45x600x12 
bcgCoalesce (45x600x12)/10 45x600x12 45x600x12 
getCatalog (45x600)/10 45x600x12 45x600 
Totals 132,300 1,944,000 1,323,000 

 
The amount of computation and data access required to 

perform a complete analysis of all SDSS data is 
substantial. Table 2 summarizes the number of files that 
would be produced and consumed. At the time of writing, 
just over 2% of this data (one of the 45 eventual stripes of 
the sky) has been entered into the virtual data catalog as 
part of our experiments. The largest DAG executed to 
date for this application contained over 700 nodes. We 
have just started the larger computations required to 
complete the process, but it is already clear that the virtual 
data system simplifies the task tremendously. Without 
Chimera, the bookkeeping required to track a production 
effort of this magnitude would be considerable, and would 
involve a large amount of custom programming. 

The virtual data mechanism can be thought of as a 
paradigm for the management of batch job production 
scripts. The Chimera system and its underlying Grid 
mechanisms automate all resource scheduling, 
synchronization, data movement, bookkeeping, and retry 
needed to manage the this large amount of work on a 
loosely coupled set of distributed resources. 

The mechanism can also be thought of as a “makefile” 
for data production. For example, if the program 
bcgCoalesce is changed, a data administrator can request 
the re-creation of the final catalogs and Chimera will 
determine that 35,100 out of the total of 132,300 jobs 
need to be re-executed. 

Similarly, if a few hundred of the 45x600x12 raw input 
files need to be revised (due to, say, errors discovered in 
the input capture system), then it is easy to determine what 
must be recomputed to update the entire output set. 

It is also interesting to note that data production can be 
performed in parallel with interactive use by users who are 
requesting final output data products. In this mode, the 
virtual data grid acts much like a large-scale cache. If data 
products are produced through the batch process before 
they are needed interactively, then the system knows, at 
the time of the interactive request, that a data product is 
already available and no computations need be scheduled 
to produce it. If on the other hand a data product is 
requested before the batch process has produced it, the 
required derivations will be executed on demand to 
support the interactive need and will then be skipped 
when the batch process encounters a similar need at a later 
point in time. 
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7 Future Directions 
 
We briefly discuss concepts that we plan to explore in 

future versions of the Chimera system.  
Three data representation modes are dominant within 

GriPhyN experiments: files, relational tables (in 
RDBMSs) and persistent object structures (in ODBMSs). 
In addition, XML is proliferating as a universal and 
perhaps unifying underlying data representation. We 
believe that the mechanisms we have developed for file-
based transformations and derivations extend naturally to 
encompass these other data modalities. If we can identify 
encapsulated data units, name these units, and specify a 
name and a pointer to transformations on the data, then 
our system can catalog both transformations and 
derivations in these data representation modes. 

We define a unit of granularity that represents the 
entity that can be tracked: a file; an entire SQL table; or 
an entire object structure or “closure” that can be 
identified within the OODB and extracted, deleted, or 
regenerated as an atomic unit. Transformations described 
by Chimera can be executable programs, SQL command-
level queries (including stored procedure invocations), 
ODBMS command-level queries or method invocations, 
or applications that access a SQL or OO database directly. 

We believe that within this model it should be feasible 
to represent code transformations that freely exchange and 
transform data (within certain restrictive and well-defined 
limits) between these three modes of data storage. We 
plan to test this hypothesis on various challenge problems 
from the GriPhyN experiments. 

We plan to augment the transformation description 
with information about the nature and state of the software 
and hardware environment in which a transformation 
executes [16]. This information can extend into the realm 
of configuration management systems.  

We will also assess the utility of providing data type-
based transformation templates—for example, to specify a 
transformation that translates “raw event data” files to 
“reconstructed event data” files, much as a makefile 
specifies a rule for translating a “.c” file into a “.o” file. 

We will continue to explore the range of operations 
supported by the Chimera VDL, with the goal of 
validating our ability to realize the full spectrum of 
scenarios presented in the introduction. 

Another significant research goal is to develop and test 
higher-level knowledge-based representations of domain-
specific data, and to create databases and tools for 
representing and manipulating this knowledge. The 
question of how to support discovery of data, derivations, 
and transformations in a uniform fashion raises many 
challenging problems. 

 

8 Conclusions 
 

We have described Chimera, a virtual data tracking and 
generation system that can be used to audit and trace the 
lineage of derived data produced by computation and also 
to manage the automatic, on-demand (re)derivation of 
such data. This system comprises a relational database 
schema used to represent the various entities involved in 
data derivation, a virtual data language used to represent 
derivations and to manage the virtual data database, and a 
virtual data system used to manage the virtual data 
derivation process in large distributed data grid systems. 

While the value of on-demand data derivation remains 
to be demonstrated in the general case, the value of 
auditing and tracing the lineage of scientific data in a large 
collaboration appears clear, as evidenced by the 
commitment of the four groundbreaking science 
experiments that comprise the Grid Physics Network. In 
general, we believe that virtual data techniques can 
significantly increase the usability of scientific data 
management systems by permitting science users to search 
for data based on application-level characteristics and 
automatically request the derivation of the data from pre-
stored algorithm descriptions and derivation “recipes.” 

We have achieved positive results in our first tests of 
the Chimera system. These tests involved the automatic 
derivation of collider event simulation data in an 
application relating to the CMS high energy physics 
experiment, and automatic invocation of galactic cluster 
finding algorithms on SDSS data. We have also used 
various artificial problems to demonstrate our ability to 
manage more complex data derivation relationships. 

These initial results encourage us that the Chimera 
design is viable and that it is feasible not only to represent 
complex data derivation relationships but also to integrate 
virtual data concepts into the operational procedures of 
large scientific collaborations. Further studies will provide 
additional insights into the utility of our techniques. We 
also plan to investigate the derivation of relational and 
object data, and the integration of higher-level techniques 
for representing ontologies. 
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